DEFORMATION THEORY, COMPUTATIONS, AND TORIC GEOMETRY

NATHAN ILTEN

Notes for School in Deformation Theory IV, Rome, September 16-20, 2024

1. INTRODUCTION

Throughout, we will work over an algebraically closed field \mathbb{K} of characteristic zero. All rings will be \mathbb{K} -algebras, all schemes will be \mathbb{K} -schemes, and all maps will be over \mathbb{K} . Good references for this section are [Har10, Ser06]

Let X be a scheme over \mathbb{K} . Our motivating question is the following:

Question 1.1. What kind of flat families $\pi : \mathcal{X} \to S$ exist that have X as a fiber?

This gives insight into how \mathcal{X} might fit into a moduli space. Here, *flatness* guarantees that the fibers of π behave nicely. For example, if $\mathcal{X} \subset \mathbb{P}^n \times S$, S is integral, and π is the projection, flatness is equivalent to all geometric fibers having the same Hilbert polynomial.

Example 1.2. Consider the embedded family

 $V(x_1^2 + x_2^2 + x_3^2 + tx_0^2) \subset \mathbb{P}^3 \times \mathbb{A}^1$

over $S = \mathbb{A}^1$. The fiber over 0 is a singular quadric cone, whereas all other fibers are smooth quadrics.

Answering Question 1.1 is very difficult in general. We will vastly simplify things by only considering S = Spec A, where $A \in \text{Art}$, the category of local Artinian \mathbb{K} -algebras with residue field \mathbb{K} . Given any local ring R, we will always denote its maximal ideal by \mathfrak{m}_R .

Definition 1.3. A *deformation* of X over $A \in Art$ is a Cartesian diagram

with π flat. (Cartesian just means that the diagram induces an isomorphism of X with the fiber product $\operatorname{Spec} \mathbb{K} \times_{\operatorname{Spec} A} \mathcal{X}$.) \mathcal{X} is called the *total space* of the deformation and $\operatorname{Spec} A$ the *base*.

We will often abbreviate a diagram as above by just $\pi : \mathcal{X} \to \operatorname{Spec} A$ (or even just \mathcal{X}) when the other parts of the diagram are understood. A *morphism* of deformations of X over A from $\pi : \mathcal{X} \to \operatorname{Spec} A$ to $\pi : \mathcal{X}' \to \operatorname{Spec} A$ is a map

 $f: \mathcal{X} \to \mathcal{X}'$ such that $\pi = \pi' \circ f$ and $\iota' = f \circ \iota$.

An important observation that we will constantly use is that as topological spaces, X and \mathcal{X} are identical; they only differ in terms of their structure sheaves.

Exercise 1.4. Show that any morphism of deformations $f : \mathcal{X} \to \mathcal{X}'$ is automatically an isomorphism. *Hint: induct on the length of A and use flatness.*

We can now define our main object of study. Let **Set** denote the category of sets.

Definition 1.5. The functor of deformations of X is the covariant functor

 $\mathrm{Def}_X:\mathbf{Art}\to\mathbf{Set}$

defined on objects by

 $Def_X(A) = \{Deformations of X up to isomorphism\}$

and on morphisms by pullback, that is, $f: A \to A'$ maps $\mathcal{X} \to \operatorname{Spec} A$ to

 $\mathcal{X} \times_{\operatorname{Spec} A} \operatorname{Spec} A' \to \operatorname{Spec} A'.$

Exercise 1.6. Check that Def_X is well-defined for morphisms.

We will occasionally be a bit sloppy and conflate an isomorphism class of deformations and a particular representative of that class; we only do this when it won't lead us into problems.

Example 1.7. $Def_X(\mathbb{K})$ is the singleton set.

We call any functor $F : Art \to Set$ such that $F(\mathbb{K})$ is a singleton a functor of Artin rings. The tangent space to such a functor is $F(\mathbb{K}[t]/t^2)$.

Example 1.8. Given any local \mathbb{K} -algebra R, the functor $\operatorname{Hom}(R, -)$ of local \mathbb{K} -algebra homomorphisms from R to a given Artinian ring is a functor of Artin rings.

Exercise 1.9. For R any local K-algebra, the tangent space of Hom(R, -) is $(\mathfrak{m}_R/\mathfrak{m}_R^2)^*$. This justifies the terminology.

Our dream would be for Def_X to be a representable functor. More precisely, let **Comp** be the category of complete local noetherian K-algebras with residue field K. We dream of finding $R \in \operatorname{Comp}$ so that $\operatorname{Hom}(R, -) : \operatorname{Art} \to \operatorname{Set}$ is isomorphic to Def_X . (Even better, we might ask for R to be even more geometric, e.g. the localization at a maximal ideal of a finitely generated K-algebra.) We could then think of $\operatorname{Spec} R$ as being the space parametrizing all possible infinitesimal deformations of X.

Unfortunately, this is often impossible, so we will concentrate on asking for something weaker. **Definition 1.10.** A map $F \to G$ of functors of Artin rings is *smooth* if for every surjective $A' \to A$ in **Art**, the induced map

$$F(A') \to G(A') \times_{G(A)} F(A)$$

is surjective.

Why should this notion be called smooth? It is because for representable functors, this is the same thing as a smooth map of rings. We call a surjection of \mathbb{K} -algebras $B' \to B$ a *nilpotent extension* if the kernel is nilpotent.

Lemma 1.11 (Infinitesimal lifting lemma, cf. [Ser06, Theorem C9]). Consider a \mathbb{K} -algebra homomorphism $f : R \to S$ with S a localization of a finite type R-algebra. The following are equivalent:

- (1) S is a smooth¹ R-algebra;
- (2) For every nilpotent extension $B' \to B$ of local rings with a commutative square

- there exists $S \to B'$ making the resulting diagram commute;
- (3) For all primes \mathfrak{p} of S, $\operatorname{Hom}(S_{\mathfrak{p}}, -) \to \operatorname{Hom}(R_{f^{-1}(\mathfrak{p})}, -)$ is a smooth map of functors of Artin rings.

Criterion (3) is just the special case of (2) restricted to extensions of Artinian rings.

Definition 1.12. A hull for Def_X is some $R \in \text{Comp}$ and a smooth map of functors $\text{Hom}(R, -) \to \text{Def}_X$ which is an isomorphism on tangent spaces.

By Schlessinger's theorem, Def_X has a hull if X is affine with isolated singularities, or X is proper over Spec K.

What does it mean that $\operatorname{Hom}(R, -) \to \operatorname{Def}_X$ is a hull? For any n, the map $R \to R/\mathfrak{m}_R^n$ gives a deformation $\mathcal{X}_n \in \operatorname{Def}_X(R/\mathfrak{m}_R^n)$. By smoothness (applied to $A = \mathbb{K}$), for any other deformation $\mathcal{Y} \in \operatorname{Def}_X(A')$, for n sufficiently large there is a map $R/\mathfrak{m}_R^n \to A'$ such that

$$\mathcal{Y} \cong \mathcal{X}_n \times_{\operatorname{Spec} R/\mathfrak{m}^n} \operatorname{Spec} A'.$$

In other words, any deformation of X can be induced from some \mathcal{X}_n by pullback. The information encoded by $\operatorname{Hom}(R, -) \to \operatorname{Def}_X$ is the same as knowing R and the family of deformations $\mathcal{X}_n \in \operatorname{Def}_X(R/\mathfrak{m}_R^n)$ since any $R \to A$ necessarily factors through R/\mathfrak{m}_R^n for n sufficiently large.²

Exercise 1.13. Show that if Def_X has a hull, it is unique up to (non-canonical) isomorphism. *Hint: reduce to showing that any surjective endomorphism of an Artinian ring is an isomorphism.*

Exercise 1.14. Show that if Def_X has a hull $\operatorname{Hom}(R, -) \to \operatorname{Def}_X$, it is characterized by the following property: for any $A \in \operatorname{Art}$ and $\mathcal{Y} \in \operatorname{Def}_X(A')$, there is a map $f : R \to A$ with uniquely determined differential such that $\mathcal{Y} \cong \mathcal{X}_n \times_{\operatorname{Spec} R/\mathfrak{m}^n}$ Spec A'.

 $^{^{1}}$ Often times (as in [Ser06, Appendix C]) 3 above plus essentially of finite type is taken as the definition of smooth. Here, I mean smooth as defined by the usual Jacobian criterion.

 $^{^{2}}R$ together with the \mathcal{X}_{n} also go by the name miniversal or semiuniversal deformation.

Our goal is to explicitly describe the hull of Def_X in concrete situations. When is this possible? Situations that I know about:

- (1) X is given by equations (i.e. X affine or projective). Using the relational criterion of flatness [Ste03, pp 8] one can iteratively lift equations and relations to obtain a hull [Ste95, Ilt12].
- (2) X has special structure making Def_X particularly simple, e.g. Def_X is smooth (if X is Fano or Calabi-Yau) or there are only quadratic obstructions (if Def_X is controlled by a "formal" DGLA).
- (3) Our focus: X is smooth and proper over \mathbb{K} .

Example 1.15. For the singular quadric

$$V(x_1^2 + x_2^2 + x_3^2) \subset \mathbb{P}^3,$$

a hull is given by $R = \mathbb{K}[[t]]$ along with the deformations \mathcal{X}_n obtained from Example 1.2 by base changing to Spec $\mathbb{K}[t]/t^n$.

2. Deformations of Smooth Varieties

A good reference for this section is [Man22]. We now consider the special situation that X is smooth. The motto here is:

 Def_X is controlled by the tangent sheaf \mathcal{T}_X .

We will make this precise. First we deal with the affine case:

Lemma 2.1. Suppose X is smooth and affine, and A is in Art. Then any element of $\text{Def}_X(A)$ is isomorphic to the product family $X \times \text{Spec } A$.

Proof. Take $X = \operatorname{Spec} B$, let $\mathcal{X} \in \operatorname{Def}_X(A)$ be given by $\mathcal{X} = \operatorname{Spec} B'$. Applying the second criterion of the infinitesimal lifting lemma to R = A and $S = A \otimes B$, we obtain $B \otimes A \to B'$, that is, a map of deformations $\mathcal{X} \to X \times \operatorname{Spec} A$. This is an isomorphism by Exercise 1.4.

Moving to the non-affine case, suppose we have an affine open cover $\mathcal{U} = \{U_i\}$ of X. Consider any deformation $\mathcal{X} \in \text{Def}_X(A)$ for some $A \in \text{Art}$. By Lemma 2.1 we have isomorphisms

$$\phi_i: \mathcal{O}_X(U_i) \otimes A \to \mathcal{O}_\mathcal{X}(U_i)$$

and composing the restriction of ϕ_j and ϕ_i^{-1} to $U_{ij} = U_i \cap U_j$ we obtain

$$\phi_{ij} = (\phi_i^{-1})_{|U_{ij}} \circ (\phi_j)_{|U_{ij}} : \mathcal{O}_X(U_{ij}) \otimes A \to \mathcal{O}_X(U_{ij}) \otimes A.$$

These automorphisms ϕ_{ij} are called *infinitesimal automorphisms*.

Definition 2.2. Given a ring R and $A \in \operatorname{Art}$, we define $\operatorname{Aut}_R(A)$ to be the set of all A-algebra homomorphisms $\phi : R \otimes A \to R \otimes A$ such that $\phi \otimes A/\mathfrak{m}_A$ is the identity.

Observe that in fact the ϕ_{ij} from above belong to $\operatorname{Aut}_{\mathcal{O}_X(U_{ij})}(A)$. It is straightforward to verify a number of other properties:

- (1) After restricting to $U_{ijk} = U_i \cap U_j \cap U_k$ they satisfy the cocycle condition $\phi_{jk}\phi_{ik}^{-1}\phi_{ij} = \text{id.}$
- (2) Choosing different ϕ'_i gives us $\sigma_i = \phi_i^{-1} \phi'_i \in \operatorname{Aut}_{\mathcal{O}_X(U_i)}(A)$ satisfying $\phi'_i = \phi_i \circ \sigma_i$. Then $\phi'_{ij} = \sigma_i^{-1} \phi_{ij} \sigma_j$. We thus say that collections of automorphisms $\{\phi_{ij}\}$ and $\{\phi'_{ij}\}$ are *equivalent* if they differ by some $\{\sigma_i\}$ as above.
- (3) Isomorphic deformations yield equivalent data $\{\phi_{ij}\}$.
- (4) Given a collection of infinitesimal automorphisms $\{\phi_{ij}\}$ satisfying the cocyle condition, one can glue to obtain a corresponding deformation.

Thus we obtain:

Theorem 2.3. Let X be a smooth variety with open cover $\mathcal{U} = \{U_i\}$. For $A \in Art$,

 $\operatorname{Def}_X(A) \cong \{ \{\phi_{ij}\} \mid \phi_{ij} \in \operatorname{Aut}_{\mathcal{O}_X(U_{ij})}(A) \text{ satisfy the cocycle condition} \} / \sim$

where \sim is the equivalence relation from point 2 above.

We would like to *linearize* this description.

Exercise 2.4. Let S be a \mathbb{K} -algebra. There is a bijection

$$\operatorname{Der}(S,S) \to \operatorname{Aut}_S(\mathbb{K}[t]/t^2)$$

sending ∂ to id $+t\partial$.

This generalizes.

Definition 2.5. Let S be a K-algebra and $A \in \operatorname{Art}$. Given $\partial \in \operatorname{Der}(S, S) \otimes \mathfrak{m}_A$, we define

$$e^{\partial} = \sum_{k>0} \frac{1}{k!} \partial^k \in \operatorname{Hom}(S \otimes A, S \otimes A).$$

Since $\mathfrak{m}_A^n = 0$ for $n \gg 0$, the above sum is finite.

Theorem 2.6 ([Man22, Proposition 3.4.3]). The map $e : \text{Der}(S, S) \otimes \mathfrak{m}_A \to \text{Aut}_S(A)$ is an isomorphism. The inverse of e^{∂} is $e^{-\partial}$.

Proof sketch. To show that $e^{\partial} \in \operatorname{Aut}_{S}(A)$, use the Leibniz rule (and various identities). To show that the induced map e is an isomorphism, induct on the length of A.

Notice that in particular, e gives an isomorphism

$$\mathcal{T}_X(U_{ij}) \otimes \mathfrak{m}_A \to \operatorname{Aut}_{\mathcal{O}_X(U_{ij})}(A).$$

Using the exponential map, we can define a binary operation \star on $\mathcal{T}_X(U) \otimes \mathfrak{m}_A$ via the equality

$$e^{x \star y} = e^x e^y.$$

This gives $\mathcal{T}_X(U) \otimes \mathfrak{m}_A$ the structure of a (non-abelian) group. The Baker-Campbell-Hausdorff theorem says that \star can be expressed solely in terms of iterated commutators; the first few terms are

$$x \star y = x + y + \frac{1}{2}[x, y] + \frac{1}{12}[x, [x, y]] - \frac{1}{12}[y, [x, y]] + \dots$$

Using \star and the exponential map, we may reintrepet Theorem 2.3. Recall that the *alternating Čech complex* for a sheaf \mathcal{F} with respect to the cover \mathcal{U} is the complex $\check{C}^{\bullet}(\mathcal{U}, \mathcal{F})$ with

$$\check{C}^{k}(\mathcal{U},\mathcal{F}) = \{ \alpha \in \bigoplus_{i_0,\dots,i_k} \mathcal{F}(U_{i_0\dots i_k}) \mid \alpha_{i_0\dots i_k} = \operatorname{sign}(\sigma) \alpha_{\sigma(i_0\dots i_k)} \; \forall \sigma \in S_{k+1} \}$$

where the action of the permutation σ is the obvious one, and with differential $d: \check{C}^{k-1}(\mathcal{U}, \mathcal{F}) \to \check{C}^k(\mathcal{U}, \mathcal{F})$ given by

$$d(\alpha)_{i_0...i_k} = \sum_{j=0}^k (-1)^j (\alpha_{i_0...\hat{i_j}...i_k})_{|U_{i_0...i_k}}$$

Here i_j means we remove the index i_j . Of particular note are the differentials d^0 and d^1 :

$$d^{0}(\alpha)_{ij} = \alpha_{j} - \alpha_{i} \qquad d^{1}(\alpha)_{ijk} = \alpha_{jk} - \alpha_{ik} + \alpha_{ij}$$

where we are implicitly restricting sections to U_{ij} and U_{ijk} .

We have that $Def_X(A)$ may be identified with

$$\left\{ \alpha \in \check{C}^1(\mathcal{U}, \mathcal{T}_X) \otimes \mathfrak{m}_A \mid \mathfrak{o}(\alpha) = 0 \right\} / \sim$$

where

$$\mathfrak{o}(\alpha)_{ijk} = \alpha_{jk} \star (-\alpha_{ik}) \star \alpha_{ij}$$

and ~ is relation induced by $\alpha \sim \alpha'$ if and only if there exists $\gamma \in \check{C}^0(\mathcal{U}, \mathcal{T}_X) \otimes \mathfrak{m}_A$ with $\alpha'_{ij} = -\gamma_i \star \alpha_{ij} \star \gamma_j$.

Exercise 2.7. For $A = \mathbb{K}[t]/t^2$, \star is the same as +.

Exercise 2.8. Show that $\operatorname{Def}_X(\mathbb{K}[t]/t^2)$ may be identified with

$$\ker d^1 / \operatorname{im} d^0 = \check{H}^1(\mathcal{U}, \mathcal{T}_X).$$

Given a surjection $A' \to A$ in **Art** and $\mathcal{X} \in \text{Def}_X(A)$, we would like to know if there is $\mathcal{X}' \in \text{Def}_X(A')$ restricting to \mathcal{X} . We will consider this for an extension

$$0 \to I \to A' \to A \to 0$$

with $\mathfrak{m}_{A'} \cdot I = 0$ (sometimes called a *small extension*). Representing \mathcal{X} by

$$\alpha \in C^1(\mathcal{U}, \mathcal{T}_X) \otimes \mathfrak{m}_A$$

satisfying $\mathfrak{o}(\alpha) = 0$, the question becomes: does there exist

$$\alpha' \in C^1(\mathcal{U}, \mathcal{T}_X) \otimes \mathfrak{m}_{A'}$$

satisfying $\alpha' \otimes_{A'} A = \alpha$ such that $\mathfrak{o}(\alpha') = 0$? We call such α' a *lift* of α .

Exercise 2.9. Let α be as above. Take any $\alpha' \in \check{C}^1(\mathcal{U}, \mathcal{T}_X) \otimes \mathfrak{m}_{A'}$ such that $\alpha' \otimes_{A'} A = \alpha$. Then $\mathfrak{o}(\alpha')$ is a cocycle in $\check{C}^2(\mathcal{U}, \mathcal{T}_X) \otimes I$. Furthermore, α has a lift to A' if and only if the class of $\mathfrak{o}(\alpha')$ in $\check{H}^2(\mathcal{U}, \mathcal{T}_X) \otimes I = \ker d^2 / \operatorname{im} d^1$ vanishes.

We thus see that the tangent space to Def_X is $\check{H}^1(\mathcal{U}, \mathcal{T}_X)$, and $\check{H}^2(\mathcal{U}, \mathcal{T}_X)$ may be viewed as an "obstruction space" for Def_X : it detects obstructions to lifting deformations to larger bases.

The construction of this section can be reversed and carried out for any sheaf of Lie algebras \mathcal{L} on X: there is still a BCH product \star and one can define a functor $F_{\mathcal{L}}$ of Artin rings via

$$\mathbf{F}_{\mathcal{L}}(A) = \left\{ \alpha \in C^{1}(\mathcal{U}, \mathcal{L}) \otimes \mathfrak{m}_{A} \mid \mathfrak{o}(\alpha) = 0 \right\} / \sim .$$

The tangent space for this functor is given by $\check{H}^1(\mathcal{U}, \mathcal{L})$, and $\check{H}^2(\mathcal{U}, \mathcal{L})$ detects obstructions to lifting.

Example 2.10. Let X be a scheme, \mathcal{E} a vector bundle on X. Then the functor of deformations of the vector bundle \mathcal{E} is isomorphic to $F_{\mathscr{E}nd(E)}$.

3. Solving the Deformation Equation

The basic idea in this section is found in [Ste95]. A more detailed exposition with complete proofs is in [IR24]. As in the previous section, let's assume that Xis smooth; we'll additionally assume that X is complete so that $H^i(X, \mathcal{T}_X)$ is finite dimensional for all i. We wish to use the description of Def_X in terms of $\check{C}^{\bullet}(\mathcal{U}, \mathcal{T}_X)$ in order to compute a hull $\text{Hom}(R, -) \to \text{Def}_X$ of Def_X .

To start, fix cocycles $\theta_1, \ldots, \theta_p \in \check{C}^1(\mathcal{U}, \mathcal{T}_X)$ whose images give a basis of $H^1(X, \mathcal{T}_X)$ and cocycles $\omega_1, \ldots, \omega_q \in \check{C}^2(\mathcal{U}, \mathcal{T}_X)$ whose images give a basis of $H^2(X, \mathcal{T}_X)$. Set $S = \mathbb{K}[[t_1, \ldots, t_p]]$ with maximal ideal \mathfrak{m} . We will inductively construct

$$\alpha^{(r)} \in \check{C}^1(\mathcal{U}, \mathcal{T}_X) \otimes \mathfrak{m} \qquad g_\ell^{(r)} \in \mathfrak{m}^2, \ \ell = 1, \dots, q$$

starting with

$$\alpha^{(1)} = \sum_{\ell=1}^{p} t_{\ell} \theta_{\ell}$$

and $g_1^{(1)} = \ldots = g_q^{(1)} = 0$. We can think of $\alpha^{(r)}$ as encoding the *r*th order approximation of the semiuniversal family \mathcal{X}_{r+1} and the $g_\ell^{(r)}$ as the equations for the *r*th order approximation of the base space $\operatorname{Spec} R/\mathfrak{m}_R^{r+1}$.

Set $J_r = \langle g_\ell^{(r)} + \mathfrak{m}^{r+1} \rangle \subset S$. To construct $\alpha^{(r+1)}, g_\ell^{r+1}$ we will solve the *deformation equation*

(3.1)
$$\mathfrak{o}(\alpha^{(r)}) - \sum_{\ell=1}^{q} g_{\ell}^{(r)} \cdot \omega_{\ell} \equiv d(\beta^{(r+1)}) + \sum_{\ell=1}^{q} \gamma_{\ell}^{(r+1)} \cdot \omega_{\ell} \mod \mathfrak{m} \cdot J_{r}$$

for

$$\beta^{(r+1)} \in \check{C}^1(\mathcal{U}, \mathcal{T}_X) \otimes \mathfrak{m}^{r+1} \qquad \gamma_\ell^{(r+1)} \in \mathfrak{m}^{r+1}, \ \ell = 1, \dots, q.$$

We then set

$$\alpha^{(r+1)} = \alpha^{(r)} - \beta^{(r+1)} \qquad g_\ell^{(r+1)} = g_\ell^{(r)} + \gamma_\ell^{(r+1)}.$$

Proposition 3.2. It is possible to iteratively solve (3.1) for $\beta^{(r+1)}, \gamma_{\ell}^{(r+1)}$.

Proof sketch. Given a solution of (3.1) modulo $\mathfrak{m} \cdot J_{r-1}$, it follows from properties of \star that

$$\mathfrak{o}(\alpha^{(r)}) - \sum_{\ell=1}^{q} g_{\ell}^{(r)} \cdot \omega_{\ell} \equiv 0 \qquad \mod \mathfrak{m} \cdot J_{r-1}$$

so in particular $\mathfrak{o}(\alpha^{(r)}) \equiv 0 \mod J_r$. Considering the small extension

$$0 \to J_r \to S/(\mathfrak{m} \cdot J_r) \to S/J_r$$

and using Exercise 2.9 shows that a solution exists.

Let g_{ℓ} be the projective limit of $g_{\ell}^{(r)}$, and α be the projective limit of the $\alpha^{(r)}$. Take

$$J = \langle g_1, \dots, g_q \rangle$$
 $R = S/J$ $R_n = S/J_n$.

The cochain α determines a map $\operatorname{Hom}(R, -) \to \operatorname{Def}_X$ as follows: for $A \in \operatorname{Art}$, any $\phi: R \to A$ factors through $R_n \to A$ for $n \gg 0$. The homomorphism ϕ maps to the deformation corresponding under the exponential map to $\phi(\alpha^{(n)})$.

Proposition 3.3. The above map $\operatorname{Hom}(R, -) \to \operatorname{Def}_X$ is a hull.

Proof sketch. By construction, $\operatorname{Hom}(R, \mathbb{K}[t]/t^2) \to \operatorname{Def}_X(\mathbb{K}[t]/t^2)$ is an isomorphism *(Verify this!)* To show that the map of functors is smooth, by the *standard smoothness criterion* [Man22, Theorem 3.6.5] it suffices to show that there is an "injective map of obstruction spaces". This is guaranteed by the construction. \Box

In practice, solving (3.1) can be difficult since $\check{C}^1(\mathcal{U}, \mathcal{T}_X)$ and $\check{C}^2(\mathcal{U}, \mathcal{T}_X)$ are typically very large spaces (i.e. not finite dimensional vector spaces) and not particularly amenable to computation. In the next section we will study a situation where we can overcome this problem by breaking these spaces up into finite dimensional pieces.

Exercise 3.4. Suppose that we have a K-linear map $\psi : \check{C}^2(\mathcal{U}, \mathcal{T}_X) \to \check{C}^1(\mathcal{U}, \mathcal{T}_X)$ such that for any coboundary $\omega \in \check{C}^2(\mathcal{U}, \mathcal{T}_X), d(\psi(\omega)) = \omega$.

- (1) Setting $\omega'_{\ell} = \omega_{\ell} d(\psi(\omega_{\ell}))$, show that the images of $\omega'_1, \ldots, \omega'_q$ still give a basis for $H^2(X, \mathcal{T}_X)$, and $\psi(\omega'_{\ell}) = 0$ for all ℓ .
- (2) Assuming now that $\psi(\omega_{\ell}) = 0$ for all ℓ , show that we can solve the deformation equation as follows. Let ξ be the normal form of $\mathfrak{o}(\alpha^{(r)}) - \sum_{\ell=1}^{q} g_{\ell}^{(r)} \cdot \omega_{\ell}$ with respect to $\mathfrak{m} \cdot J_r$ for some graded local monomial order.³. Then we can take

$$\beta^{(r+1)} = \psi(\xi)$$

and $\gamma_{\ell}^{(r+1)}$ is determined by

$$\xi - d(\psi(\xi)) = \sum \gamma_{\ell}^{(r+1)} \omega_{\ell}.$$

4. Deformations of Smooth Toric Varieties

Most of this section is joint work with Sharon Robins [IR24]. Basic references for toric varieties are [Ful93, CLS11].

Definition 4.1. An *toric variety* is a normal variety X equipped with a faithful action of an algebraic torus $T \cong (\mathbb{K}^*)^n$ having a dense orbit in X.

Example 4.2. Projective space \mathbb{P}^n has an obvious torus action and is a toric variety; so do products of projective spaces. The projectivized bundle

$$\operatorname{Proj}_{\mathbb{P}^n}(\mathcal{O}(a_1) \oplus \ldots \oplus \mathcal{O}(a_m))$$

similarly has the structure of a toric variety.

The motto here is:

Toric varieties are completely combinatorial.

Any toric variety X comes with a canonical open cover \mathcal{U} by T-invariant affine open sets. Furthermore, for any T-invariant affine open set $U \subseteq X$, T acts on

 $H^0(U,\mathcal{T}_X),$

³See e.g. [GP08, Chapter 1]

so the Čech complex decomposes into eigenspaces indexed by characters of the torus. Each graded piece is a complex of finite dimensional \mathbb{K} -vector spaces, so solving the deformation equation of the previous section becomes something you can do in practice. Here, we will use the combinatorial structure of X to get an even nicer way to understand Def_X .

The combinatorics takes place in two lattices: the character lattice M of T and its dual $N = \text{Hom}(M, \mathbb{Z})$, the lattice of one-parameter subgroups of T. Throughout, we will identify both lattices with \mathbb{Z}^n , with the dual pairing just given by the standard scalar product. The toric variety variety X is completely encoded by a fan: a finite set Σ of pointed rational polyhedral cones in $N_{\mathbb{R}} = N \otimes \mathbb{R}$, closed under taking faces, such that any two cones in Σ intersect in a common face. We write X_{Σ} for the toric variety corresponding to Σ .

Example 4.3. The fan

corresponds to the eth Hirzebruch surface $\mathbb{F}_e = \operatorname{Proj}_{\mathbb{P}^1}(\mathcal{O} \oplus \mathcal{O}(e)).$

One way of understanding the fan Σ associated to a toric variety is that the relative interiors of cones $\sigma \in \Sigma$ contain exactly the one-parameter subgroups of T that have the same limits in X.

Exercise 4.4. Use this to determine the fan for \mathbb{P}^2 .

There are two more important things to know about the fan Σ :

- (1) The open sets in the canonical cover \mathcal{U} of X_{Σ} are in bijection with maximal cones of Σ . Denote the set of maximal cones by Σ_{max} , and the open set corresponding to σ by U_{σ} ;
- (2) Rays (i.e. one-dimensional cones) of Σ are in bijection with torus invariant divisors of X_{Σ} . We let $\Sigma(1)$ be the set of rays. For $\rho \in \Sigma(1)$, n_{ρ} is the primitive element of N generating ρ , and D_{ρ} is the corresponding divisor. Given $u \in M$, we will write $\rho(u)$ as shorthand for $\langle n_{\rho}, u \rangle$.

In the remainder of this section, we consider the following running example:

Example 4.5. Fix the lattice $N = \mathbb{Z}^3$. We consider a fan Σ with six rays, where the generator of the *i*th ray ρ_i is given by the *i*th column of the following matrix:

$$\begin{pmatrix} 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 1 & -1 & 0 & 0 \\ 0 & 0 & -2 & 5 & 1 & -1 \end{pmatrix}.$$

A set of rays belong to a common cone of Σ unless the set contains one of the pairs $\rho_1, \rho_3, \rho_2, \rho_4$, or ρ_5, ρ_6 . An abstract representation of the fan is given by the following figure.

The ray ρ_6 is at ∞ , and collections of rays belong to a common cone of Σ exactly when the corresponding vertices in the figure belong to a common simplex. This is the fan for a certain \mathbb{P}^1 -bundle over \mathbb{F}_1 .

We know that the cohomology groups of \mathcal{T}_X are important for understanding Def_X ; they can be understood combinatorially in this setting:

Proposition 4.6. Let $X = X_{\Sigma}$ be a smooth complete toric variety. Then for $i \ge 1$,

$$H^{i}(X, \mathcal{T}_{X}) \cong \bigoplus_{u \in M, \rho \in \Sigma(1)} \widetilde{H}^{i-1}(V_{\rho, u}, \mathbb{K})$$

where $V_{\rho,u}$ is the simplicial complex

$$V_{\rho,u} = \bigcup_{\sigma \in \Sigma} \operatorname{conv} \left\{ \rho' \subseteq \sigma \mid \begin{array}{c} \rho'(u) < 0 \text{ if } \rho' \neq \rho \\ \rho'(u) < -1 \text{ if } \rho' = \rho \end{array} \right\}.$$

Example 4.7. Continuing the running example, let u = (0, -2, -1) and v = (-1, 0, 1). We obtain the following simplicial complexes:

Verify this! We see that $H^1(X, \mathcal{T}_X)$ is (at least) one-dimensional in degrees u and v, and $H^2(X, \mathcal{T}_X)$ is (at least) one-dimensional in degree 2u + v. In fact, $H^1(X, \mathcal{T}_X)$ is four-dimensional, and $H^2(X, \mathcal{T}_X)$ is one-dimensional.

We want to describe Def_X in terms of Čech complexes for the simplicial complexes $V_{\rho,u}$. For any $\sigma \in \Sigma_{\max}$, $\sigma \cap V_{\rho,u}$ is either connected or empty, so there a natural surjection

$$\lambda: \mathbb{K} \to H^0(\sigma \cap V_{\rho,u}, \mathbb{K})$$

with unique linear section s. Let $\mathcal{V}_{\rho,u}$ be the closed cover of $V_{\rho,u}$ consisting of $\sigma \cap V_{\rho,u}$ for $\sigma \in \Sigma_{\max}$. This gives us maps

$$\check{C}^{\bullet}(\Sigma_{\max}, \bigoplus_{\rho, u} \mathbb{K}) \xrightarrow{\lambda} \bigoplus_{\rho, u} \check{C}^{\bullet}(\mathcal{V}_{\rho, u}, \mathbb{K})$$

Note that λ is compatible with the Čech differential, but s is not. The vector space $\bigoplus_{a,u} \mathbb{K}$ has a Lie bracket given by

$$[\chi^{u} \cdot f_{\rho}, \chi^{u'} \cdot f_{\rho'}] := \rho(u')\chi^{u+u'} \cdot f_{\rho'} - \rho'(u)\chi^{u+u'} \cdot f_{\rho}$$

where e.g. $\chi^u \cdot f_{\rho}$ identifies that we are in the (ρ, u) th summand. For any $A \in \mathbf{Art}$ this gives a map

$$\mathfrak{o}_{\Sigma}: \check{C}^0(\Sigma_{\max}, \bigoplus_{\rho, u} \mathfrak{m}_A) \to \check{C}^1(\Sigma_{\max}, \bigoplus_{\rho, u} \mathfrak{m}_A)$$

where

$$\mathfrak{o}_{\Sigma}(\alpha)_{ij} = -\alpha_i \star \alpha_j.$$

Theorem 4.8. Let $X = X_{\Sigma}$ be a smooth complete toric variety. Then Def_X is isomorphic to the functor Def_{Σ} defined by

$$\mathrm{Def}_{\Sigma}(A) = \{ \alpha \in \bigoplus_{\rho, u} \check{C}^{0}(\mathcal{V}_{\rho, u}, \mathfrak{m}_{A}) \mid \lambda(\mathfrak{o}_{\Sigma}(s(\alpha))) = 0 \} / \sim$$

where \sim is a natural equivalence relation we won't define here.

Proof sketch. The toric Euler sequence $\bigoplus \mathcal{O}(D_{\rho}) \to \mathcal{T}_X$ induces an isomorphism of the deformation functor F controlled by $\bigoplus \mathcal{O}(D_{\rho})$ with Def_X . There is a type of "homotopy fiber" construction for the inclusion of sheaves of Lie algebras $\bigoplus_{\rho} \mathcal{O}(D_{\rho}) \hookrightarrow \bigoplus_{\rho,u} \mathbb{K}$ that gives an isomorphism of F with $\operatorname{Def}_{\Sigma}$. \Box

This theorem is a big improvement: we get to deal with zero- instead of onecochains, and we are dealing with locally constant sheaves on simplicial complexes. We can modify the deformation equation (3.1) in an obvious way to construct a hull for Def_{Σ}. Let's do this for our example! For reasons I won't discuss, we can restrict our attention to the cones $\sigma_1, \sigma_2, \sigma_3, \sigma_4$ (see the figure in Example 4.5). We will ignore the obstruction terms on $\sigma_1 \cap \sigma_3$ and $\sigma_2 \cap \sigma_4$ as these will always vanish. We'll also ignore the two other contributions to $H^1(X, \mathcal{T}_X)$ not mentioned in Example 4.7 as they don't contribute to obstructions. We will always consider obstruction terms on $\sigma_i \cap \sigma_{i+1}$ with indices taken modulo 4.

Choosing the images of n_{ρ_2} and n_{ρ_3} as generators of $\widetilde{H}^0(V_{\rho_5,u},\mathbb{K})$ and $\widetilde{H}^0(V_{\rho_6,v},\mathbb{K})$ leads to $\alpha^{(1)}$ as pictured:

Using that $\rho_5(u) = \rho_6(v) = -1$ and $\rho_5(v) = \rho_6(u) = 1$, we first compute $\lambda(\mathfrak{o}_{\Sigma}(s(\alpha^1)))$ modulo \mathfrak{m}^3 . All terms vanish on the nose, except for the coefficient of t_1t_2 coming from $V_{\rho_5,u+v}$ and $V_{\rho_6,u+v}$, shown in black:

This is the image of the zero-cochain shown above in red. This leads to $g_1^{(2)} = 0$, and $\alpha^{(2)}$ as pictured:

We now compute the coefficient of $t_1^2 t_2$ in $\lambda(\mathfrak{o}_{\Sigma}(s(\alpha^{(2)})))$. We start with the 2,3 term. Dropping s from notation for simplicity, we have:

$$\begin{split} [-\alpha_2^{(2)}, \alpha_3^{(2)}] &= t_1 t_2 \chi^{u+v} (f_5 - f_6) + t_1^2 t_2 \chi^{2u+v} f_5 + \dots \\ \frac{1}{12} [-\alpha_2^{(2)}, [-\alpha_2^{(2)}, \alpha_3^{(2)}]] &= -\frac{1}{6} t_1^2 t_2 \chi^{2u+v} f_5 + \dots \\ -\frac{1}{12} [\alpha_3^{(2)}, [-\alpha_2^{(2)}, \alpha_3^{(2)}]] &= -\frac{1}{6} t_1^2 t_2 \chi^{2u+v} f_5 + \dots \\ \lambda(\mathfrak{o}_{\Sigma}(s(\alpha^2))) &= \frac{1}{2} \cdot t_1^2 t_2 \chi^{2u+v} f_5 - \frac{1}{6} t_1^2 t_2 \chi^{2u+v} f_5 - \frac{1}{6} t_1^2 t_2 \chi^{2u+v} f_5 + \dots \\ &= \frac{1}{6} t_1^2 t_2 \chi^{2u+v} f_5 + \dots \end{split}$$

Similarly, one computes that the 3,4 term has a coefficient of $(5/6)\chi^{2u+v}f_5$. We can picture $\lambda(\mathfrak{o}_{\Sigma}(s(\alpha^{(2)})))$ in $V_{\rho_5,2u+v}$:

This is not a coboundary, so this example has a cubic obstruction. In fact, one can show that the hull is given by $\mathbb{K}[t_1, t_2, t_3, t_4]/t_1^2t_2$.

References

- [CLS11] David A. Cox, John B. Little, and Henry K. Schenck. Toric varieties, volume 124 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2011.
- [Ful93] William Fulton. Introduction to toric varieties, volume 131 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry.
- [GP08] Gert-Martin Greuel and Gerhard Pfister. A Singular introduction to commutative algebra. Springer, Berlin, extended edition, 2008. With contributions by Olaf Bachmann, Christoph Lossen and Hans Schönemann, With 1 CD-ROM (Windows, Macintosh and UNIX).
- [Har10] Robin Hartshorne. Deformation theory, volume 257 of Graduate Texts in Mathematics. Springer, New York, 2010.
- [Ilt12] Nathan Owen Ilten. Versal deformations and local Hilbert schemes. J. Softw. Algebra Geom., 4:12–16, 2012.
- [IR24] Nathan Ilten and Sharon Robins. Locally trivial deformations of toric varieties. arXiv:2409:02824, 2024.
- [Man22] Marco Manetti. Lie methods in deformation theory. Springer Monographs in Mathematics. Springer, Singapore, [2022] ©2022.
- [Ser06] Edoardo Sernesi. Deformations of algebraic schemes, volume 334 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2006.
- [Ste95] Jan Stevens. Computing versal deformations. Experiment. Math., 4(2):129–144, 1995.
- [Ste03] Jan Stevens. Deformations of singularities, volume 1811 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2003.

Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby BC V5A1S6, Canada

Email address: nilten@sfu.ca